7 Ways Seed-Applied Technologies are Evolving

-

From boosting yield to helping you look at what you’re trying to accomplish on the farm, these products hold a lot of promise for the future.

Next-generation seed treatment technologies, non-chemistry-based seed treatment technologies, and the potential of biologicals and microbes are all driving the industry forward. Farmers need to keep in mind that they must not only keep up with the latest trends, but they also have to make sure they are asking the right questions. In order to do be able to do that, you need to know how these products are growing and evolving.

They may help boost yield.

Russell Trischuk, regional technical managerfor BASF Functional Crop Care in Saskatoon, Sask., says to get to the next plateau of yield, there’s a lot yet to be done with these technologies. “We’ve made big strides in yield over the past few decades due to effective fungicides, herbicides and insecticides plus a big contribution from genetics technologies. Still, the yield increase year over year isn’t what is used to be. Through on-seed technologies we can afford the plant the ability to manage abiotic and even some biotic stresses. We believe these products really will take us to the next level of production in our crops not only in Western Canada, but globally.”

They may help you rely less on chemistry.

John Kibbee is the owner of Kibbee ST Consultingin Guelph, Ont.He has a history of product development and technical management experience in seed treatments. He says in terms of the non-chemistry-based seed treatment technologies that are of interest to him, microbes for seed treatment — also called biologicals — can do some incredible things “and we’ve only scratched the surface.” Kibbee believes seed treatments have become a low-impact crop protection method, and microbes are the next evolution. “They’re green, have a better acceptance among consumers, but are complicated to formulate and turn into a commercial product that works consistently in the field.”

They may help enhance the effectiveness of the chemistry you’re using.

Trischuksays the use of biologicals in combination with chemistry allows them to plug holes in their crop protection systems and improve the crops they are putting it on. “A biological seed treatment is a technology where it’s easy to demonstrate these benefits,” he states, adding a chemical treatment is very effective for protecting the seed and plant as it gets out of the ground.

These products will help protect the plant during its most crucial stage.

“We know that within a two or three-week period after planting, the impact of that chemical treatment starts to wear off. This is where biological treatments come in,” says Trischuk. He explains that it takes some time for that microorganism to grow and colonize the root system or soil surrounding it, and due to that they see a delayed response in disease control. “This is right in line for when we see a chemical treatment begin to lose its efficacy,” he says. “We can bridge that gap that we see until later in the season when a foliar treatment can be applied.”

These technologies are changing how we think about seed treatments.

Kibbee says it took him a long time to adjust his thinking, as he spent his career trying to protect crops from microbes, but now he thinks about nurturing them and allowing them to survive. Looking to the future, what sort of microbes can we harness for use in seed treatments of the future? “Rhizobia is an obvious one for nitrogen fixation on legumes and is something we’re already seeing used. Azospirillum is popular in Latin America for nitrogen fixation on cereals,” says Kibbee.

Seed treatments are changing how manufacturers commercialize products.

“We now have a dedicated seed and soilborne pathogens screening program [at BASF],” Trischuk explains. “All molecules are screened not only for efficacy against foliar diseases, but against all major diseases attacking the seed and seedling in the soil. That’s in contrast to what we used to do, where we’d find an active ingredient that was a good fungicide, develop it for foliar use, and then look to see if there’s was a fit on seed or in soil.” He believes that change in philosophy has allowed them to identify a couple of molecules that they don’t think would have passed screening for a foliar fungicide but have been found to be very effective on seed or in soil.

They’ll help change how you make product selections. 

In the end, Trischuk says when comparing biological and chemical solutions — especially with regard to consistency of performance and expectation of results — farmers need to examine their expectations.Some of these products don’t have a requirement to submit efficacy data to receive registration,” he says. “Make sure you ask questions about the product. If there’s only been one trial, how credible is that data? At BASF we try to give a lot of info about what the grower can expect. If you want to know how something works, ask for data.”