The 4-P Funding Model


(Photo courtesy Harpinder S. Randhawa)

Taking a look at one very successful Alberta-based initiative.

The 4-P model (public/private/producer partnership) for crop R&D involves funding contributions from government, private companies and producers. This type of initiative is seen as an effective way to pool resources and ensure the growth of total overall investment in variety development in Canada – and according to those directly involved, the 4-P involving Agriculture and Agri-food Canada (AAFC), Canterra Seeds and the Alberta Wheat Commission (AWC) is no exception.

This particular 4-P started in 2014 and runs through to the end of 2018, but Tom Steve reports that discussions about renewal will begin in early 2018.

Tom Steve

“It’s the main CPSR (Canada Prairie Spring Red) wheat breeding program in Western Canada,” says Steve, general manager at the AWC. “Three-quarters of this wheat class is grown in Alberta as it’s well-suited to the climate. It goes into both feed and milling markets.”

The partnership’s main benefit for producers in his view is the continuation of a program that was in danger of being shut down. The main CPSR breeder at AAFC in Winnipeg had retired and the program was in jeopardy, he recalls. AAFC put out a request for partnership proposals in early 2014, and Canterra Seeds submitted one that was accepted in March. AAFC then held discussions with multiple grower groups that had expressed potential interest in participating, and by mid-2014, notes Canterra Seeds president and CEO David Hansen, AWC had joined the partnership with the full support of his company. All three parties are contributing $3.4 million in cash and in-kind items over the five-year timeline.

“It’s overall a great way to develop new varieties with higher yields and better disease resistance,” Steve notes. “Alberta farmers, through the AWC, will get a share of royalties on seed sales, likely starting with a variety called AAC Crossfield in the fall of 2018, and those royalties will go back into further research investments.”

Two other lines are already also approved for registration, and Hansen says there are many new candidates in the variety registration trials “that are showing amazing promise.”

Harpinder S. Randhawa

Dr. Harpinder Singh Randhawa, based at AAFC Lethbridge, is the partnership’s breeder behind these varieties. He notes the 4-P model is not just about funding, but about providing other resources critical to ensuring a strong breeding program moving forward.

“With AAFC sites that have closed, for example the Cereal Research Centre in Winnipeg around 2012, and also the downsizing of satellite research sites, there really was no room for my breeding work,” he explains. “Through this partnership, I have access to trial sites through Canterra and this is very important. Money is certainly needed for variety development, but you also need other resources. To have the increased research capacity over a greater geographic area in Saskatchewan, Manitoba and Alberta greatly benefits the research. Canterra is also providing evaluation work.”

Canterra Seeds is also providing insight into commercial opportunities, says Hansen, as well as the ability to use different production and commercialization models based on what is best for a particular variety to maximize its distribution and value. In addition, Canterra is providing links to end-users and an understanding of their requirements in Canada and the U.S. in order to help guide development of new varieties in the program.

Beyond all this, Steve lists another benefit of this arrangement for producers: AWC’s close relationship with Dr. Randhawa. “It’s a great exchange of information,” he says.

Hansen agrees. “The relationship among the three partners continues to grow,” he notes. “We are well-aligned, and with an effective governance model in place we are able to work well towards the objectives of the agreement. Partnerships make sense when you are able to bring various elements required to the table to further the advancement, versus everyone trying to do things on their own. Wheat is a very complex crop that requires a significant investment in order for it to remain a competitive option for the farmer. This may not apply for all crops, but for wheat and durum, this does seem to be true, and so the arrangement definitely makes sense.”

David Hansen

Hansen adds that Canterra Seeds’ interest in continuing the three-way relationship is strong, and that it fully intends to explore new opportunities, including perhaps the involvement of Limagrain Cereals Research Canada if it makes sense. Limagrain and Canterra Seeds have a partnership, and this relationship could provide opportunity for expanded future collaboration, including germplasm and breeding tools.

For his part, Steve notes that for AWC, the 4-P model for breeding Canada Prairie Spring Red wheat has been very successful and he looks forward to discussions on a renewal.

“We really like this model, and with it, we have the resources in place for a world-class program,” he says. “We look forward to more varieties over the next few years.”

Harpinder adds that from his perspective, it would be wonderful to continue on, and he looks forward to sitting down and discussing it early next year.

“It’s been wonderful,” he says, “to work both with Canterra and also the Alberta Wheat Commission.”

Alberta Regional Variety Trials


In 2017, the cereal and flax RVT program under ARVAC expects to generate $76,700 through a $1,300 annual testing fee charged for each variety being tested, excluding checks. (Photo: Janet Kanters)

The Alberta Regional Variety Testing program (RVT) is the most trusted source of variety information for producers in Alberta. Farmers need accurate, regional and the most current variety information to stay competitive.

The Alberta Regional Variety Advisory Committee (ARVAC), the official body that establishes policy for the variety-testing program, takes this responsibility very seriously, and constantly strives to present the data in the most appropriate and understandable manner.

According to Alex Fedko, RVT program coordinator and crop research technologist with Alberta Agriculture and Forestry, the goal of the RVT is to provide cereal, flax and pulse crop growers, and industry and extension specialists with scientifically valid crop variety performance information under different agro-climatic conditions. Data is published in the Alberta Seed Guide and in Alberta Agriculture’s Varieties of Cereal and Oilseed Crops for Alberta pamphlet.

“There are many sources of variety information for producers,” says Fedko. “However, this program is unique because the data comes from two independent sources: the co-op trials where new crop cultivars are tested before registration and data from post-registration (regional) trials. For example, the spring wheat co-op data that is reported in the Varieties of Cereal and Oilseed Crops for Alberta factsheets includes days to maturity, resistance to lodging, shattering and sprouting, and resistance to five different diseases. It is hard to find a third-party source of information that would have all the relevant material in one package.

“Free access to independent variety performance information helps producers to select varieties that perform well in their commercial fields, and also this data is helping seed growers to choose a cultivar that will meet their customers’ needs,” adds Fedko.

Accurate Data

The RVT program is responsible for generating unbiased post-registration information for varieties of wheat, barley, oat, rye triticale, flax, field pea, chickpea, lentil, dry bean and faba bean.

Good field trials are required to generate reliable data, and several quality control steps are in place to achieve this. Fedko annually reviews test protocols with collaborators to detail the conduct of the trials and the expectations. All of the field trials are also inspected; cooperators receive 35 per cent of the plot payment for seeding, but unless the trial passes a July inspection, no further payment is made.

Crop specific coordinators, individuals who are experts in the crop, review the raw data prior to analysis. After the data are approved, statistical analysis is performed and measures of variability similar to those used in crop registration trials are used to determine the reliability of the trial prior to entry into the database. Finally, the crop specific coordinators review the tables prior to presentation before the committee, where they are discussed and ultimately approved for publication.

“We constantly strive to present the data in the most pertinent and understandable manner. As examples, in recent years we’ve changed the method of yield data presentation, used actual ratings to report disease resistance and added various columns of new information,” notes Fedko. “And finally, producers have asked us to enter a few more cultivars that they may be able to relate to more readily. The entries in the trials changes every year and it is made up of new varieties that producers are likely to see within the next two to three years.”

The inclusion of some older “benchmark” cultivars that are well known to producers started this season and Fedko says that should help producers make better-informed decisions. The selection of the benchmark varieties is based on the most popular varieties from data published in Yield Alberta. It means that wheat, barley and oat trials now have three to four checks instead of one.

Understanding Cereal Variety Data

When comparing varietal performance data, growers should find as much information as they can from various sources.

“The RVT tables done by independent cooperators is really just another set of data to compare the results producers are seeing from company data, variety registration data, crop insurance data or their own field trials,” says Fedko. “Consistency among the different sources of data sets is the key. If a variety is repeatedly coming out in the top, the confidence that it will perform well goes up.”

However, in case there are substantial differences among those different data sets, it doesn’t necessarily mean a grower should stay away from a variety, but rather it should be the signal to do more research. In this case, digging deeper into background of those trials may help. Protocols used, weather conditions, or other growing season stresses may have caused the poorer performance at some locations.

Looking at other factors besides yield is important to get a complete picture. In many cases, the varieties included in the trials are top performing varieties from various programs, so the yield differences may be small. In this case, a variety that has a larger number of station years can increase confidence.

Other factors that may be as important as yield data are maturity, lodging and disease ratings. Growers have many options at their disposal, however, spending a lot of money on good genetics will not compensate for poor agronomic management. Starting with good genetics is a foundation to have a successful crop, but it can’t make up for poor management down the road. It is still important to get adequate plant population established early, sufficient nutrients for an appropriate target yield, and then protect the yield potential from pests and harvest losses.


Conducting regional variety testing for numerous crops over the large agricultural area of Alberta is a huge undertaking. The RVT program is funded in four ways: industry funds via annual entry fees for lines in the regional trials; Government of Alberta contribution of the RVT coordinator; funding from parties with interest in regional crop performance data for Alberta producers; and in-kind contributions of time/seed/trial coordination/plot data from collaborators who do not receive monetary compensation. There are some differences in funding between the cereal and pulse crops.

According to Fedko, in 2017, the cereal and flax RVT program under ARVAC expects to generate $76,700 through a $1,300 annual testing fee charged for each variety being tested, excluding checks. In addition, a major contribution from the Alberta Wheat Commission along with funding from the Alberta Barley Commission, the Oat Growers, the Alberta Seed Growers and the Alberta Seed Processors (half goes towards ARVAC) helps to defray modest expenses to deliver the program.

“This revenue is used to fund regional variety trials at nine to 11 core sites in Alberta,” notes Fedko. “A few additional unfunded sites are also grown by interested parties, largely for extension purposes, and those data are available to us, provided that all quality controls are met. “

Fedko adds that in recent years, it has been generally accepted that $50 per plot is required to defray the direct costs of growing small plot variety trials. “We are not quite there yet, however. Thanks to the very generous contribution from the Alberta Wheat Commission, we are much closer to the goal than two years ago.”

The pulse crops regional variety-testing program has been sustainable thanks to $100,000 funding through the Growing Forward II program. The funding is a contribution from the industry and Alberta Pulse Growers, and is matched on a 3:1 basis by the federal government.

“Finally, the funds we receive are solely for the benefit of Alberta producers and do not leave the province,” says Fedko. “Moreover, of the $278,000 collected last year for the RVTs, less than $15,000 or five per cent was used for seed setup, shipping, administering the funds and maintaining the crop information system database.”

At the end of the day, industry contributions, including those from Alberta Wheat Commission, Alberta Barley, Alberta Oat, Alberta Seed Growers and Alberta Seed Processors are priceless, contributing to the inherent success of the RVTs.

Taking APG’s Research Pulse


(Photo courtesy D’Arcy Hilgartner)

Alberta Pulse Growers invest millions in pulse research. Where do those dollars go, and why?

As pulse acres in Alberta continue to rise, so does Alberta Pulse Growers’ (APG) investment in research, with $9 million tied up in more than 40 projects.

The province’s 6,000 pulse growers support the non-profit organization through a levy on pulse sales. The money raised is used to fund many initiatives, including marketing, extension, advocacy and administrative activities.

However, research is the organization’s cornerstone, says Leanne Fischbuch, APG’s executive director.

“Research is a key aspect of everything we do with our organization for our growers,” she says. “We’re focused on doing the right research — the research that will work for us and our industry.”

Research initiatives are aimed at growing genetics, yield and sustainability in pulse production, and crop utilization and health benefits are also focus areas. These five research divisions provide a balance of grower- and consumer-focused research, says Fischbuch, because building demand for pulse products is as vital as improving yields.

D’Arcy Hilgartner

The organization proportionately reinvests in the pulse crops Alberta producers are growing, says D’Arcy Hilgartner, APG’s chair. “We try to allocate based on where our levy dollars are flowing from,” he says. “Because we’re a producer-funded commodity commission, we try to be very reflective of the needs and wants of our producers.”

And as an Alberta pulse producer, Hilgartner has a vested interest in where APG invests its research money.

“It’s my money — it’s producer money,” says Hilgartner. “We’re all producers around that table, so we’re aware we need to be very responsible about how we spend our money. We want to give producers the best bang for their buck, addressing their concerns and their needs,” he says.

Growing Genetics

Many Canadian institutions and organizations are currently carrying out pulse research for APG, including Agriculture and Agri-Food Canada (AAFC), Alberta Agriculture and Forestry (AAF), University of Alberta (U of A), University of Toronto, University of Saskatchewan’s Crop Development Centre (CDC), Northern Alberta Institute of Technology, Alberta Agriculture and Forestry’s Food Processing Development Centre, Farming Smarter and Western Ag Innovations.

According to Fischbuch, APG consistently funds research on genetic improvement, a top priority for the organization. At present, 11 breeding projects are being funded, worth 25 per cent of the total research budget.

For example, AAFC research scientists Deng-Jin Bing and Parthiba Balasubramanian are working on developing field pea and dry bean varieties, respectively, with improved disease resistance and harvestability as well as increased yields.

“These scientists are continually putting out fantastic genetics that are very Alberta focused. Our industry is seeing the benefits of those varieties. It’s exciting to see that work in commercial production,” says Fischbuch.

In the future, APG wants to see an increase in the number of varieties available to Alberta producers suited to the province’s growing conditions. Thus, the organization allocates generous funds for pre-commercialization research, says Hilgartner.

“That’s where companies tend not to put money in because they don’t see a [return] next year or the year after. If it’s a new variety, it’s ready five to 10 years from now. That’s where we thought we’d look at putting our support,” he says.

Last year, the APG board decided to end its agreement with Saskatchewan Pulse Growers (SPG) whereby Alberta’s Select Status seed growers could access breeder seed through the SPG’s Variety Release Program.

“We were in that agreement for numerous years where we provided some funding that allowed [Select Status] seed growers access to that program. When the program was initiated, there were indirect benefits to APG members via the Select Seed growers, and recent evaluation determined the program was no longer meeting the organization’s objectives,” says Fischbuch.

“When we look at Alberta, we would like to see more pulse varieties targeted for Alberta growers focused on Alberta’s environment. So, testing in the province of Alberta and focusing on selections that would be key for our growers. We’re not the same environment as other parts of Canada,” she says.

Furthermore, Fischbuch says SPG is currently reviewing the way it commercializes its pulse varieties outside of Saskatchewan, and is exploring options for marketing those varieties.

“There will be opportunity to have varieties here from CDC and elsewhere. I think it’s all changing. There are many breeders out there and they’re producing great varieties. We want to see that benefit come to Alberta. And if there are CDC varieties that excel, that’s great — they’ll eventually be here,” she says.

Leanne Fischbuch

Fischbuch also believes the ratification of the International Union for the Protection of New Varieties of Plants (UPOV ’91) convention will also spur investment in varietal development.

“With UPOV ’91, I think there’s opportunity to move forward and see more companies bring their genetics here for testing and establishment. Look at the numbers of varieties that have been introduced since the legislation passed. You’re getting a whole bunch of plant breeders protecting their varieties now when they’re bringing them into Canada,” says Fischbuch.

“If the [varieties] are showing good yields, farmers will find them and use them. And we’ll continue with our investments in research because, really, that’s where we’re focusing and trying to make sure that our growers are able to grow their pulses, market their pulses, and really be profitable and sustainable for the industry.”

Growing Yields and Sustainability

Currently, 16 projects utilizing 36 per cent of the research budget is devoted to growing pulse yields in Alberta. And when it comes to boosting yields, work on pea leaf weevil is essential, says Fischbuch. “We’ve seen pea leaf weevil creep across the province from the south, moving northward,” she says.

AAFC researcher Héctor Cárcamo is assessing management strategies, such as cultural practices and insecticide applications, to control pea leaf weevil in field pea and faba bean crops.

Meanwhile, Maya Evenden, a U of A entomologist, has devised an early warning system using semiochemical-baited traps to monitor pea leaf weevil on the Prairies.

Funds have also been allocated for at least three separate studies on Aphanomyces, a soil-borne water mould that poses a serious risk to Alberta pea crops.

Aphanomyces could destroy our pea industry,” says Fischbuch. “This is going to be huge for our producers and we need to get a handle on it.”

AAFC researcher Syama Chatterton estimates Aphanomyces euteiches, which causes pea root rot, is present in up to half of Alberta fields, says Fischbuch. A leading scientist on Aphanomyces research, Chatterton is working on ways to address the issue through APG-funded studies, and further research is projected.

“Our continued work on Aphanomyces is a real priority when it comes to making sure we’re going to be able to have pulses here in the province of Alberta for a long time. The more we can learn about that disease, the better off we’ll be. It’s absolutely critical for us,” says Fischbuch.

Research that increases pulse crops’ long-term sustainability as a viable choice for producers has been allocated seven per cent of APG’s funds. Projects focus on capturing pulses’ rotational benefits, and fertility and water-use management attributes, and can be either producer or consumer focused. For example, an ongoing study is examining the agronomic and economic benefits of including pulses in a Brown soil zone crop rotation.

Utilization and Health

Utilization and health are both consumer-focused categories and are allocated 16 per cent each of APG’s research budget. These research projects raise awareness of pulses’ health benefits, such as lowering blood sugar and LDL cholesterol.

APG is also supporting the Change Cancer Alberta initiative, which studies the effects of increasing pulses in the diets of primary care patients. Fischbuch says growers may not realize how research is affecting pulse awareness and demand.

“One of the big messages we want to spread is pulses are healthy. There’s a variety of things that are different from what a grower might consider impacts him,” says Fischbuch.

Last year, 2016, was International Year of Pulses, and it proved beneficial in raising awareness about pulses’ health and environmental benefits. To celebrate, APG partnered with AAF’s Food Processing Development Centre and industry partners on a project called “The Alberta Pulse,” to create 10 prototypes of food products incorporating peas, beans and faba beans.

From ravioli to chocolate cake and dog treats, the food products were created to showcase the use of pulse ingredients to the processing side of the industry.

“Having these companies experience the use of pulse ingredients where they never thought of using them before was a real opportunity for us to raise awareness that these ingredients are out there now,” says Fischbuch.

Other utilization projects currently on the go include the development of pulse protein-based pet food kibble, a line of pulse-based gluten free ready-meal products and the use of pea flours in food products with improved nutrition and taste, among others. There will always be a market for pulses, says Fischbuch, especially through recent efforts to increase utilization.

And although there are many agronomic reasons for producers to add pulses to their rotations — for example, pulses fix their own nitrogen, make soil healthier by putting nutrients (including nitrogen) back into the ground, help break disease cycles in the field, and give yield boosts to canola and cereals planted after them — it’s the bottom line that counts. Producers will find that pulses pencil out.

“Pulses have been good business for many growers for many years,” says Fischbuch. “It’s a crop for which there is always a market, and it’s one we’re trying to develop more.”

National Alliance

To further increase the pulse market, APG has aligned its research efforts with the national pulse organization, Pulse Canada. “That’s to grow the industry; to add 25 per cent utilization of pulse ingredients by 2025 in areas where you may not have seen them before,” says Fischbuch.

Although the ways in which producers benefit from APG-funded research are many and varied, tangible outcomes are ongoing, says Hilgartner, such as better varieties, agronomic practices and recommendations. Also, he says, market demand for pulses has grown substantially over the last few years.

However, producers demand research that is broad in scope, from highly technical laboratory-based research to field trials where production is carried out under the same conditions growers experience, says Hilgartner.

“We try to spread our research across the board, so that it helps producers throughout the [entire] process. You can develop a product that works well in a sterile environment, but doesn’t work in a commercial setting — to the producer that has no value,” he says.

As demand climbs and producers increase pulse acres, APG is growing as well. Hilgartner says the organization is working hard to meet the needs of its members, and he encourages producers to be part of the commission and part of the process. He’s excited about his role in pulse production and the opportunities available to his fellow Alberta producers.

“I look at pulses, not only in Alberta, but Western Canada, as a great story economically and environmentally, as to what we can produce here and what we can provide, not only to North American markets, but to the world. A lot of that is because of the research and the high-quality products that come out of here,” he says.

Correctly Used Neonics Do Not Adversely Affect Honeybee Colonies, New Research Finds


The three most widely used neonicotinoid pesticides for flowering crops pose no risk to honeybee colonies when used correctly as seed treatments, according to new studies by University of Guelph researchers.

Amid mounting controversy over use of neonicotinoids (neonics) and declining bee population, a new analysis by U of G scientists of previously unpublished studies and reports commissioned by agri-chemical companies Bayer and Syngenta – as well as published papers from the scientific literature – shows no significant ill effects on honeybee colonies from three common insecticides made by the companies.

The findings are described in five papers published this month by Keith Solomon, a toxicologist and emeritus professor with the School of Environmental Sciences and adjunct professor Gladys Stephenson in the Journal of Toxicology and Environmental Health-B.

The duo analyzed 170 unpublished studies that Syngenta and Bayer had submitted to regulatory agencies. They also included 64 papers from the open, peer-reviewed literature on the topic.

Prof. Keith Solomon

Acknowledging that these three pesticides can kill individual honeybees and may also pose a threat to other pollinators, Solomon said: “At least for honeybees, these products are not a major concern. Use of these neonics under good agricultural practices does not present a risk to honeybees at the level of the colony.”

The U of G scientists were asked by Bayer and Syngenta to assess earlier studies conducted by or for the companies on impacts of pesticide-treated seeds on honeybees.

They conducted weight of evidence assessments, an approach developed specifically for these studies that is intended to gauge the quality of reported data and to compare relevance of results from different studies.

The companies wished to respond to controversy and inconclusive evidence about the potential harm posed to pollinators by neonic pesticides, said Solomon.

All pesticides in Canada must be registered with the Pest Management Regulatory Agency.

The study involved three pesticides – clothianidin and imidacloprid made by Bayer, and thiamethoxam made by Syngenta – that are used in seed treatments for various field crops.

Solomon said the original papers varied in quality and scientific rigour, but their results generally showed no adverse effects of pesticides on honeybee hives.

“Many studies look at effects of insecticides on individual bees. What regulations try to protect is the colony — the reproductive unit.”

He said other researchers might use their results to improve studies of pesticide exposure in hives.

The U of G researchers stressed the importance of “good agricultural practices,” including ensuring that seeds are coated and planted properly to avoid airborne contamination of bees during field seeding.

Solomon said their results don’t necessarily apply to other insects that also serve as crop pollinators and that have shown population declines. For those pollinators, he said, “There are too few studies at the colony or field level to allow a weight of evidence analysis.”

The U of G researchers said bees and other pollinators are affected by potentially harmful factors, including long-distance movement of colonies for crop pollination as well as mites and viruses, weather, insufficient food and varying beekeeping practices.

Source: University of Guelph

Keeping Up with Alfalfa Advances


(Photo courtesy Annie Claessens)

Whether it’s new conventional varieties with better winter hardiness and disease resistance, there’s a lot happening in the alfalfa seed market. Here’s a snapshot of the latest advances and what’s coming down the pipe.


In the world of forage seed, alfalfa is getting a lot of press these days, due in part to a GE variety that has sparked renewed interest in the world of alfalfa seed.

Even before the U.S.-based Forage Genetics International (FGI) began selling its HarvXtra alfalfa seed with Roundup Ready technology to farmers in Eastern Canada in 2016, the alfalfa industry was split on the issue of whether doing so was a good idea.

On one side, alfalfa seed producers in the West feared contamination risk they said could pose a danger to alfalfa seed exports. In the East, growers wanted the ability to grow herbicide tolerant alfalfa for livestock feed.

In the end, FGI decided to go ahead and launch the product in the East for hay production only. It’s currently not being sold in Western Canada. Despite the controversy, the issue served to put alfalfa back in the spotlight.

“It’s what often gets lost when people talk about alfalfa — the conventional side and some of the strides being made there,” says Erick Lutterotti, general manager of Gold Medal Seeds in Brooks, Alta., (a subsidiary of FGI) and vice-chair of the Canadian Seed Trade Association’s Forage and Turf Committee.

Winter Hardiness

Especially exciting for Lutterotti are new varieties of multifoliate alfalfa that have been bred to be very winter hardy.

“That’s the big thing in conventional alfalfa.”

Winter hardiness is determined by an alfalfa variety’s ability to withstand cold temperatures. The lower the rating for winter hardiness, the greater the ability of the plant to survive the winter months. Winter hardiness ratings indicate the potential longevity of the alfalfa stand.

Lutterotti notes that although fall dormancy is related to winter hardiness, the latter is separate from fall dormancy. In recent years, breeders have been successful at separating winter hardiness from fall dormancy.

“In the past, multifoliate alfalfas came with a 4 or 5 fall dormancy rating, meaning it wakes up early and goes to bed late. For people south of Lethbridge, you’d get three or four cuts per year, maybe a fourth,” Lutterotti says.

“Inherently, creeping-rooted alfalfa was the most winter hardy there was, but those varieties were best suited for lower-yielding two-cut systems. Now we have a very high-quality alfalfa — dairy quality — that’s still at that 4 fall dormancy rating, but you have a winter hardiness below 2, which is as a good or better than any creeper on the market. This gives you lots of options as to your farming system, and it can be used in many different regions.”

Regional differences are the key to knowing what alfalfa variety is best for Western Canada, Lutterotti adds. If the alfalfa crop is meant for short-term growth, moderate winter hardiness is usually adequate. For long-term stands, a lower winter hardiness rating is often a good idea, but it can depend on a couple factors, he notes.

“In regions with more snow, a lower winter hardiness rating may not provide much additional protection, but you never know. You don’t want the grower to just assume that they’re going to get a lot of snow cover next winter. You might not get as much snow in a given year, so it might be a good idea to go with an alfalfa that can withstand exposure to the cold better.”

He recommends retailers work with their customers to determine the variety that is the best fit for their specific situation. Popular varieties include Compass, with ultra-winter hardiness and fast regrowth.

GE alfalfa isn’t the only product FGI is working on. It’s also making strides with conventional alfalfa, an example being an attempt to offer stronger resistance to Anthracnose stem rot.

Anthracnose of alfalfa is caused by Colletotrichum trifolii. This fungus can attack leaves, but most characteristically attacks stems and crowns. While resistance has been built in to many varieties of alfalfa on the market, Peterson notes it’s beginning to break down in some lines. The disease is rare in Western Canada, but is more prevalent in the eastern United States and Eastern Canada.

“Even with Aphanomyces root rot, which has been around for over 20 years, the industry is finding there’s still a lot to be gained by breeding new varieties resistant to additional races of this important disease,” says Mike Peterson, global traits lead for FGI.

Improving Yield, Persistence and Quality

The advances in alfalfa products like high-quality winter hardy varieties are due in part to the hard work of people like Annie Claessens, forage breeder at Agriculture and Agri-Food Canada’s Quebec Research and Development Centre.

Claessens is part of a multidisciplinary team of researchers constantly working to improve the forage crop on a number of fronts.

Annie Claessens

Like breeders of most other crops, alfalfa breeders are working to boost yields. The key to doing so is lowering the dormancy, but doing so can have unwanted effects on alfalfa persistence. It’s an interesting conundrum that Claessens and her team are challenged with.

“We’re trying to help growers extend the alfalfa growing season from late summer through to early winter, so we want less dormant cultivars. However, when they’re less dormant, they generally have lower winter survival.”

Some significant gains have been made in recent years, like the kind Lutterotti refers to, where winter hardiness has been improved while keeping fall dormancy the same. But there’s a ways to go, Claessens notes.

“Those two traits can be improved simultaneously. We’ve developed an indoor selection method to decrease dormancy but increase freezing tolerance, which is one of the most important factors in lowering winter survival under our climatic conditions.”

Breeding for better freezing tolerance involves creating plants with perennial organs (crown and roots) that are able to withstand freezing temperatures. She reports that they have been able to increase the freezing tolerance of alfalfa by 5 C.

Claessens and her colleagues are also working at disease resistance, which is the second-most important factor lowering winter survival. Breeding efforts are focusing on Phytophthora root rot and Aphanomyces root rot, thereby helping alfalfa to be less affected by cold and wet soil conditions.

Phytophthora root rot, caused by a fungus-like pathogen, is believed to survive for many years in the soil, and may attack alfalfa after long rotations to other crops. Aphanomyces root root, caused by a pathogen very similar to Phytophthora, attacks both seedlings and adult alfalfa plants and can dramatically reduce yield and vigour of established stands.

“We’ve developed an indoor selection method to identify which plants are highly and moderately resistant to those diseases. We can select plants with greater resistance and breed them to rapidly develop lines that are better able to resist those pests.”

Boosting quality also remains the mission of alfalfa breeders like Claessens.

“Our goal is to have cows produce more milk from the alfalfa they consume, either by increasing alfalfa’s digestibility or energy content so the microorganisms in their stomach can have more energy to process the protein,” she says. “By increasing the energy content, we can increase milk production from forages, increase protein content of the milk, and reduce nitrogen loss in the environment at the same time.”

Exciting new alfalfa varieties don’t just appear overnight, though. Claessens notes that breeding programs are expensive, and new sources of germplasm and funding are always being sought. It can take many years for a new alfalfa variety to hit the market.

Agricultural Research Up in the Air


When the Alberta government released its provincial budget in March, it was met with mixed emotions by those in the agriculture sector.

While the budget contained an increase of one per cent in overall agricultural spending, it prompted questions about the level of funding for certain key areas in the sector.

One of the biggest concerns of many producers was a lack of commitment to adequately fund agricultural research in the province, including an absence of funding for the Alberta Crop Industry Development Fund beyond 2018.

Those concerns have only increased since, as the Alberta government has begun a review of provincial services including the province’s agricultural research program. While the results of this review aren’t expected until next April, some fear it could result in a significant cut to provincial funding for agricultural research.

“In my mind, it’s very likely that cuts will come,” says Ross McKenzie, a retired research scientist who worked for Alberta Agriculture and Forestry for 38 years.

“It’s easy to cut research. When research is eliminated it’s often not very obvious immediately, but it does have repercussions down the road if farmers are looking for information and that work is not being done. That puts Alberta farmers at a huge disadvantage.”

McKenzie says one of the challenges for researchers is that the value of their work often isn’t appreciated until many years down the road. He cites the example of soil research with phosphate fertilizer and phosphorus soil testing that was conducted in the province in the 1990s; it cost nearly $400,000 at the time, but has provided millions of dollars in benefits to growers each year.

“It might sound like a lot to spend $300,000 or $400,000 on a research project,” he says. “[But] that work is now used by all the soil testing labs to help farmers decide how they should be spending $300 or $400 million a year on phosphate fertilizer. That’s a huge benefit.”

This is hardly the first time concerns have been raised about the fate of agricultural research in the province. In 2001, a research review resulted in about half of Alberta ag researchers either being cut or shifted to other departments, and extension work was curtailed – a huge loss for Alberta farmers. More recently, in 2014, the provincial government eliminated the Agriculture and Food Innovation Endowment Fund.

Jason Lenz, chair of Alberta Barley, says one of his concerns is that any potential cuts to provincial funding for research will place pressure on producer groups like his to help fill the void.

“Without government funding, it puts the onus on producer groups to fully fund the future of research and innovation, and it becomes [more] difficult,” Lenz says. “We’ve demonstrated that we can and will work with any government in order to give Alberta’s farmers a competitive advantage. Everyone benefits when we work together with government and public breeding institutions to give farmers a chance to have success.”

Terry Young, chair of the Alberta Wheat Commission’s research committee, says the cost of agricultural research can be extremely high and that makes it prohibitive for producer groups to go it alone. He says it’s vital that groups can leverage government funds to get the biggest bang for their research buck.

One of Young’s biggest concerns about potential cuts to ag research funding is that it could slow research into new technologies which could then have a trickle-down effect on farms.

“What I can see is that some of the newer technology may not get accepted or adopted as readily. It would take a longer time for the research to happen and for the technology to become part of best management practices,” he says.

Young uses the example of recent research on Fusarium head blight in cereal crops as an example of how producer groups working with the province has benefitted growers.

“It’s expensive, expensive research,” he says. “[But] because there’s been an emphasis to actually understand it a whole lot better, the research there will help us and give us some great dividends eventually.”

Ward Toma, general manager of the Alberta Canola Producers Commission, says it would be virtually impossible for producer groups to stay ahead of the curve when it comes to fighting disease and adopting new technologies without government research dollars. He cites past work done to develop blackleg resistance by University of Alberta researchers as an example, as well as the ongoing fight against clubroot.

“Some of the estimates are that [the cost] is in the tens of millions of dollars. Growers can’t afford that. We don’t even have the money to survey and monitor to see if clubroot exists across the province or not. We just wait for it to show up in our fields,” he says.

Caroline Sekulic, vice-chair of the Alberta Pulse Growers Commission, says while cuts to agricultural research might not be noticed immediately, they could have long-lasting consequences. She fears reduced government funding could result in more scattered results for regional variety trials and prompt some of the province’s best researchers to go elsewhere.

“If we can’t provide opportunities and research for them in this province… we could lose them,” says Sekulic, who is also a seed grower with Prestville Farms in Rycroft.

Sekulic says she and other pulse growers have benefitted enormously from working in partnership with the province. Two recent research projects – an investigation into agronomic practices to remove barriers for growing faba beans, and improved resistance to sclerotium disease in edible dry beans – might not have been possible without government support, she adds.

While some have suggested turning over this type of investigation to applied research associations could resolve any cash crunch, McKenzie suggests doing so isn’t without risk. He says one of the greatest concerns with research associations is they tend to work in isolation – they often don’t work together to conduct research projects on a province-wide basis. And, he adds, research associations don’t have their results posted on Alberta Agriculture’s website, so it’s difficult to find out who is doing research and what their results are showing.

“One of the reasons why I like to see the provincial government do it or the federal government is the research is done by unbiased people. They have no vested interest in how the results turn out,” says McKenzie. “You get a good, full picture as opposed to sometimes getting a skewed or biased perspective from an industry person.”

The challenge for many producer groups at the moment is they have already begun planning how to spend research dollars in 2018 but likely won’t know until spring what, if any, provincial government funding will be available.

“That is a concern,” Young says. “We’re going to need to know pretty quick. The funding cycle starts in January. The commitments are starting to be made by then for the next year so we need to know exactly what’s going on.”

Ed. note: Alberta Agriculture and Forestry declined to comment for the story.

Resistance to Major Fungal Disease in Oilseed Crops Now Possible


In a world first, researchers from the University of Western Australia in collaboration with Punjab Agricultural University in India have found the key to resistance to sclerotinia stem rot, a major fungal disease in Brassica oilseed crops globally.

Brassica oilseed crops include canola and mustard. Sclerotinia stem rot poses a major yield limiting threat to these crops worldwide, and currently, no commercial varieties with high level resistance to this disease are available.

The research, published in the international journal Scientific Reports, showed that resistance to sclerotinia stem rot disease found in Indian mustard is influenced by at least 10 genes. Professor Martin Barbetti from UWA’s School of Agriculture and Environment and Institute of Agriculture said the findings are exciting because they offer highly significant oilseed breeding applications and benefits.

“Developing highly resistant varieties offers the only real prospect for long-term, cost-effective management of this devastating disease,” Prof Barbetti said.

“The findings offer mustard and subsequently canola breeders a powerful tool to optimize use of the genetic variation available within wild Brassica species.”

Currently farmers rely mainly on fungicide sprays to manage the disease, but these often provide poor or inconsistent control. As forecasting this disease has proven unreliable, fungicides are often wasted in cases where little disease would have eventuated anyway, adding to the already high production costs for low-input farming systems such as in Australia and India.

“Initially for mustard crops and later for canola, such novel engineering to develop new oilseed Brassica varieties that express these critical resistances to sclerotinia stem rot will enable much more effective management of this devastating pathogen worldwide,” Prof Barbetti said.

The findings were published in the paper Mapping resistance responses to Sclerotinia infestation in introgression lines of Brassica juncea carrying genomic segments from wild Brassicaceae B. fruticulosa in Scientific Reports. The research was supported by the Government of India and the Indian Council of Agricultural Research.

Source: European Seed

Field boundaries: A home sweet home for bees


Coloured plastic cups serve as traps by attracting wild bees from this canola field near Brandon, Man.

Agriculture and Agri-Food Canada (AAFC) is working to get the buzz on bees by better understanding what types of habitats keep them happy so they’ll stick around to pollinate crops.

Pollinators thrive in field boundaries, areas such as ditches, fence lines and road allowances that surround cropped land. As farmland is consolidated into bigger fields, the centres of cropped areas move further and further from these margins – which are home to pollinators, such as bees and other insects. Pollinators provide many benefits to their ecosystems, and with a third of human food supply relying directly on insect pollination, keeping these insects happy is key.

There are 231 species of bees native to Manitoba and they are much more efficient pollinators than their domesticated honey bee cousins. Melanie Dubois, a scientist from AAFC’s Brandon Research and Development Centre, and her team are studying ways to mitigate the effects of reduced habitat on native bees.

“Most of these native bees don’t fly more than a kilometre from their nesting sites, so when fields that rely on pollinators – canola for example – get larger and larger, we have to consider if the flowering plants in the centre of these massive fields are being pollinated, and how we could improve this system,” says Dubois, senior riparian and biodiversity biologist.

Bees need food from spring until fall, but domesticated crops like canola only flower for about four weeks in the summer, so alternative sources are needed. Moreover, most native bees lay their eggs in the ground or other cavities like dead vegetation and wood, and therefore are reliant on untended and wild areas. Through plot studies, Dubois’ team is learning how to recreate native bees’ preferred habitats in the boundaries surrounding agricultural fields. The team is focused on planting perennial native flowering plants that will serve as a food source from spring to fall, but not interfere with bees’ appetites for pollinator-dependent crops like canola. If the plot studies are successful, then a wider application of bee habitat installations in agricultural field boundaries should sustain or even increase overall crop pollination.

As part of the study, Dubois’ team will conduct habitat assessments and sample bee populations in field boundaries adjacent to canola crops. Using brightly coloured plastic cups filled with a liquid mixture, the team will trap bees at regular intervals throughout the flowering season. During this time, they’ll also complete a habitat assessment, which will include an inventory of vegetation types, farm management practices, and the size and distribution of food and nesting locations within a one kilometre radius of each trapping site.

The project’s main objective is to develop practices that will help farmers and landowners assess, improve, and recreate field boundary habitats that foster pollinator well-being, and ultimately sustain or improve crop production.

The Push for Higher Protein, Starch in Peas


Chen is inspecting a pea field at Central Agricultural Research Center, Montana State University. (Photo courtesy of Central Agricultural Research Center)

Farmers in Montana, and other parts of the Northern Great Plains, are shifting from cereal mono-cropping to a cereal-dry pea cropping system; however, this transition is not without its share of unknowns.

Yield and performance of pea crops depend on their genetics and the environment. Environmental factors such as temperature and rainfall can vary greatly. Farmers in different parts of the Plains need to know which pea varieties will do well in the area they are farming.

Chengci Chen of Montana State University is working to generate that information. He has been studying how pea genetics interact with the environment to affect crop yields, and pea protein and starch content.

“Ultimately, I hope to be able to recommend which pea varieties to cultivate to growers in various environments,” says Chen.

To do that, Chen and his colleagues tested how nine different varieties of pea performed when grown in five locations across Montana. These locations were spread across the state and had different soils and climatic conditions.

Chen examined yield and protein and starch content of the different pea varieties. “These are characteristics that are important to growers and end users,” he says. Pea varieties that have higher yield can bring more profits to producers. Varieties that have higher protein or starch contents interest different end users.

For example, “dry yellow peas are fractionated into protein, starch and fiber. These components are widely used in food ingredients, especially by health-food businesses,” Chen explains. “The market for pea protein is growing rapidly because it is non-dairy and allergen-friendly.”

When the researchers evaluated the nine pea varieties grown in different environments, they found that “pea yield is affected by both genetics and environment, but environment has the larger effect,” Chen says.

Pea protein content is largely affected by environment as well. However, one kind of starch — resistant starch — content is mainly controlled by genetics.

The Northern Great Plains spans five U.S. states and two Canadian provinces.

Farmers in Montana, and other parts of the Northern Great Plains, are shifting from cereal mono-cropping to a cereal-dry pea cropping system; however, this transition is not without its share of unknowns.

Yield and performance of pea crops depend on their genetics and the environment. Environmental factors such as temperature and rainfall can vary greatly. Farmers in different parts of the Plains need to know which pea varieties will do well in the area they are farming.

Chengci Chen of Montana State University is working to generate that information. He has been studying how pea genetics interact with the environment to affect crop yields, and pea protein and starch content.

“Ultimately, I hope to be able to recommend which pea varieties to cultivate to growers in various environments,” says Chen.

To do that, Chen and his colleagues tested how nine different varieties of pea performed when grown in five locations across Montana. These locations were spread across the state and had different soils and climatic conditions.

Chen examined yield and protein and starch content of the different pea varieties. “These are characteristics that are important to growers and end users,” he says. Pea varieties that have higher yield can bring more profits to producers. Varieties that have higher protein or starch contents interest different end users.

For example, “dry yellow peas are fractionated into protein, starch and fiber. These components are widely used in food ingredients, especially by health-food businesses,” Chen explains. “The market for pea protein is growing rapidly because it is non-dairy and allergen-friendly.”

When the researchers evaluated the nine pea varieties grown in different environments, they found that “pea yield is affected by both genetics and environment, but environment has the larger effect,” Chen says.

Pea protein content is largely affected by environment as well. However, one kind of starch — resistant starch — content is mainly controlled by genetics.

Source: Seed World

Wheat Midge Tolerance Gene Detected in Soft White Wheat


Through recent advancements in marker technology, SeCan recently discovered that the majority of the soft white wheat varieties grown in Western Canada contain the Sm1 trait for midge tolerance – and for this reason they will require stewardship. The Midge Tolerant Wheat Stewardship Team provides the background and an explanation of why stewardship is necessary:

Sm1, the only known gene that confers tolerance to wheat midge, was first identified in soft red winter wheat varieties. In the late 1990s, Canadian public breeders worked to cross this naturally occurring trait into red spring wheat (CWRS and Extra Strong) for the benefit of western Canadian producers. These first products were launched in spring 2010 (AC Unity VB, AC Goodeve VB, AC Glencross VB).

Since that time, over 20 varieties of Midge Tolerant Wheat have been registered in many classes, including CWRS, CPSR, CWES, CWAD, and GP/SP.

As Sm1 products neared commercialization, entomologists agreed that the risk of midge becoming resistant to the trait was highly likely. They suggested a stewardship plan incorporating an interspersed refuge (10 per cent of a susceptible variety) was necessary to preserve the useful life of the Sm1 trait.

First evidence of Sm1 in soft white spring (SWS) wheat varieties came from field tests from the General Purpose Co-op during the 2015 growing season – conducted by the Agriculture & Agri-Food Canada (AAFC) Manitoba wheat midge program (Curt McCartney and Sheila Wolfe), and the University of Manitoba midge program (Alejandro Costamagna, Ian Wise, and Roxanne Georgison). These varieties were identified as midge resistant based upon dissection of wheat spikes.

In 2016, in coordination with SWS Breeder Dr. Harpinder Randhawa, the entire SWS Co-op was tested. The data was all based on dissection of spike samples from the Co-op field tests.

Also, in 2016, Dr. Curtis Pozniak from the Crop Development Centre (CDC) at the University of Saskatchewan, tested a marker for Sm1 on

Wheat Co-op entries. This was done to see if his DNA marker accurately predicted the field-based phenotype (i.e. kernel damage).

The DNA marker developed by CDC was done in conjunction with researchers at AAFC. To date, the marker results appear to match the results from the spike dissections.

Based on the work above, the following varieties carry Sm1 and are midge tolerant: AAC Awesome (CWSP), AAC Chiffon, AAC Indus and AC Sadash. AAC Paramount is suspected to carry Sm1 but needs to be confirmed by field test in 2017.

AC Andrew has been tested by marker and in the field, and does not contain Sm1. For this reason it will be an appropriate refuge for all tolerant varieties.

Why Stewardship Now?

If Sm1 varieties have been grown in other regions without a refuge, why do we need a refuge in Western Canada? Other regions, such as the UK and Eastern U.S., do not have a large acreage of wheat in rotation. In Western Canada, the traditional fit for SWS wheat was the irrigation area of southern Alberta – this area typically has little to no midge pressure. However, in the last seven to eight years, we have seen growth in soft white acres into non-traditional areas to supply the feed and ethanol market. In comparison to other classes, the SWS acres are relatively small. This is fortunate, but still needs to be addressed.

The fact we have been growing SWS without a refuge puts the Sm1 trait at risk. Midge tolerant wheat saves producers $40-60 million per year ($36 per acre). There are no replacement tolerance genes. “There is No Plan B.”

For this reason we need to act as quickly as possible to put a stewardship plan in place for the benefit of all wheat producers (not just soft white).

The Stewardship Plan

Seed growers will add refuge to all future seed stocks released of AAC Awesome, AAC Paramount (once field results confirm resistance), AAC Indus, AAC Chiffon and AC Sadash.

Varieties that have not yet been released have limited volumes. Remediation will be a much greater challenge for a variety like AC Sadash that is currently grown on several hundred thousand acres, making up over half of the total SWS acres.

For AC Sadash there were two options to protect Sm1: 1) Work with SeCan members and the industry to add refuge to all seed stocks available, as soon as realistically possible; 2) Deregister AC Sadash to remove it from the system, and replace it with the new products that have refuge blended in.

SeCan has decided it is in the best interests of the industry that AC Sadash remain available – and trust the industry will be willing to participate in implementing a stewardship plan.

The hope is that growers will “do what is right” to protect the trait for the benefit of future generations of wheat producers.

How Can You Prevent Creating Resistance?

If you grow one of these SWS varieties, add a refuge: one bushel of AC Andrew to every nine bushels of tolerant SWS variety.

If you’re unable to add the refuge, spray insecticide to eliminate the possibility of resistant midge (until you are able to add refuge).

In the near future, we hope to have the Sm1 marker commercially available. This will give us the opportunity to monitor farm level samples of AC Sadash for the appropriate level of refuge to ensure the stewardship is being followed.