Canola seed: What traits do you need?

-

When choosing canola hybrids for 2018, think through the yield, quality and profit achieved over the past few years and consider what factors may have reduced overall profitability. Add notes on harvestability. Then consider how seed traits could help manage any existing and potential challenges, reduce risk and improve profitability.

Seed traits to consider:

Disease resistance. Disease can be a major yield-robber and finding a disease resistance package that matches the situation on the farm can go a long way to improve yields and profitability. An important consideration: Is seed the best way to manage the disease in question? The only way to protect yield in fields that have clubroot is to use a clubroot-resistant variety. With sclerotinia, on the other hand, a well timed fungicide application typically offers good disease control if the hybrid does not have sclerotinia tolerance. Further to that example, even with a sclerotinia-tolerant variety, fungicide is still recommended with high disease pressure.

Herbicide tolerance package. Some farms have rotations or minimum tillage systems that favour specific HT system choices. But is sticking with one HT system hurting profitability in other ways? Consider a few different scenarios to test the current approach. For example, do you have any herbicide-resistant weeds to manage? Are you looking for better canola volunteer control that rotating systems might offer?

Maturity. Is canola harvest always late? If this adds too much stress to the harvest season, earlier maturity might be a high priority.

Lodged canola is a pain to harvest and often has more disease. (Photo CCC)

Lodging resistance. If a few fields this fall were badly lodged and had high levels of sclerotinia stem rot as a result of the compacted canopy, better lodging resistance may be a high priority. A variety with top-level standability might end up yielding more and reducing harvest stress on your farm compared to a variety with higher yield potential but less lodging resistance.

Pod shatter tolerance. If straight combining is part of your system, this trait has proven yield benefits – especially if combining is delayed for any reason. Research has shown while any variety can be straight combined in ideal conditions, pod shatter tolerant hybrids will outperform the others in variable straight-combining conditions. Canola Performance Trials 2017 results will include a comparison of pod shatter tolerance traits.

Yield. Yield potential is obviously very important to profit, but growers cannot realize the last few percentage points of yield from a variety if it’s not well matched to the conditions and farming systems. One approach is to consider first which of the above traits are needed to improve quality, harvestability and disease management, and to match the weed and harvest programs on the farm. From the short list of varieties that meet these needs, pick the one that has the highest yield potential.

Seed cost. Seed with stacked traits tend to cost more per pound. Seed cost is a factor in profitability calculations.

A few scenarios:

Clubroot is in the area. When the disease is confirmed in your community, it will reach your farm eventually (if it hasn’t already). So even if clubroot resistance (CR) didn’t seem worthwhile in the past, it will provide an economic benefit if it keeps the disease at low levels for the long term. The CR trait and the yield benefits it provides will be a top priority in seed decisions on many farms.

Clubroot resistance versus yield. Sometimes the variety with the highest published yields is a clubroot-susceptible variety. Consider the risk of an undetected low level of clubroot increasing to yield-robbing levels if you use a susceptible variety. Is yield potential alone enough? The good news is that many of the new CR varieties are the seed company’s top yielding products now, so choosing a CR variety for yield is a win-win scenario.

Clubroot resistance versus straight-cut performance. Farmers can get pod shatter tolerance and clubroot resistance in the same hybrids now, but if the choice comes down to one or the other for economic and other reasons, when should you give up on pod shatter and go with clubroot resistance? With clubroot present in more areas and with obvious benefits to keeping clubroot down, CR will be the higher priority in more areas heading into 2018.

Blackleg is getting worse. Blackleg-resistant seed has been the top blackleg management tool. But if blackleg seems to be getting worse, rotating to a different source of blackleg resistance should have yield and profit benefits. By scouting for blackleg each harvest season, you can track when this disease becomes an issue.

HT versus blackleg resistance. If blackleg seems to be getting worse but rotating to a different source of blackleg resistance is difficult under the desired herbicide tolerance (HT) system, the grower could ask the seed company for options, take other approaches such as longer rotations, or change the farm cropping plan to work in a different HT system.

Lodging options. Is improved genetic resistance to lodging the best approach for yield and profitability? It could be if other measures, such as lower seeding rates and lower amounts of nitrogen, are less desirable from yield, disease management and harvestability perspectives.

Optimizing Fungicide Applications on Wheat and Barley

-

Septoria (speckled leaf blotch) of barley.

Leaf spot fungal diseases can decrease cereal yield by up to 20 per cent or more, as well as diminish kernel weight, and in some cases reduce grade. This, according to Neil Whatley, crop specialist, Alberta Ag Info Centre.

“When disease risk levels are moderate to high, protection of the upper two leaves of a developing wheat plant with a timely in-crop fungicide application prevents significant losses. With barley, it’s essential to protect the upper three leaves,” he says.

Disease risk level increases when weather conditions are favourable for disease development, cereal crops are frequently grown in the same field, the chosen cereal variety is susceptible to leaf diseases, yield potential is good and crop price is high.

Tan spot and septoria leaf blotch are the most common leaf spot fungal diseases in wheat, says Whatley.

“While scald and net blotch most commonly affect barley, fungal diseases like spot blotch affect all cereal crops. These leaf spot pathogens survive on infected straw residue and stubble from cereal crops grown during the previous two to three years in a particular field. A prolonged period of rainfall, fog or heavy dew combined with moderate air temperatures in June and July raises the risk that these pathogens will produce spores and re-infect young, developing cereal plants.”

Although leaf spot diseases can be present during early plant growth, scouting for cereal leaf diseases is especially important prior to, during, and after flag leaf emergence. “The appearance of moderate levels of disease in the lower canopy indicates there is a risk to the upper canopy leaves,” says Whatley. “Under conditions favourable for disease development, leaf spot disease symptoms appear as tiny water soaked or brown or tan spots or lesions on the leaf surfaces of seedlings and tillering cereal plants. Lesions produce spores that act as the disease transfer mechanism. Under prolonged humid weather conditions, the spots become more visible as they expand and blend together. If the weather turns dry in June and July, risk level diminishes as the leaf spot pathogens remain confined to the lower leaves, causing little overall harm. However, as upper leaves emerge on the developing cereal plants, wind or the splashing motion of rain drops transfer spores from the lower canopy, and possibly from old infested crop residue, to the flag and penultimate (the leaf just below the flag) leaves, increasing the risk that key leaves for yield and grain filling may be compromised. A decision must then be made whether or not to protect the upper leaves with a foliar fungicide application.”

Spores that splash or are blown by wind onto the upper leaves will germinate under favourable conditions allowing the pathogens to infect leaf tissues and cause necrotic lesions on leaf surfaces, potentially resulting in significant loss of green leaf area.

“Preventing the loss of green leaf area on the flag and penultimate leaves is the main concern as optimal sunshine on these leaves contributes to over 50 per cent of the cereal crop’s eventual yield. The goal is to apply a foliar fungicide when the flag leaf has just fully emerged if disease risk level is moderate to high,” says Whatley. “As a rule of thumb, 20 per cent per cent disease coverage of the area of the flag leaf results in a 10 per cent yield decrease, so preventing this amount of disease is usually desirable if yield potential is good and grain prices are fair to high. If a fungicide application is made and weather conditions favourable for disease development persist, a second fungicide application may be necessary just after head emergence, and especially where Fusarium head blight is also a concern.”

Spraying too early or spraying too late results in poor disease control. “While the idea of mixing a half rate of fungicide with a late herbicide application may seem convenient, given that the flag and penultimate leaves are not fully formed, this crop management practice doesn’t directly protect the upper canopy leaves and is generally not economical for leaf spot diseases like tan spot, septoria, scald, net blotch and spot blotch,” notes Whatley. “In contrast, if stripe rust is observed early in the growing season, a fungicide application may be needed before flag leaf emergence and then again later at head emergence if risk is high and the variety is susceptible. It’s preferable to prevent leaf spot diseases with a full rate of fungicide at the flag leaf stage or just after head emergence. However, spraying too late, after the disease is well established on the flag and penultimate leaves, is also not economical because significant green leaf area has already been lost and the fungicide doesn’t cure infected leaf tissue, but instead protects healthy leaf tissue.”

Whether fungicide choice is a systemic or a contact mode of action, the fungicide should be applied directly to the leaves that are important for grain filling, i.e. the flag and penultimate leaves.

“Translocation movement of a systemic fungicide is limited to within an individual leaf and does not occur between leaves,” says Whatley. “Leaf spot pathogens can become resistant to a specific fungicide, so if disease pressure is high enough to spray more than once in the same field during the growing season, or during successive years in the same field, rotate fungicide modes of action. Adequate water volumes ensure optimal leaf coverage and, therefore, optimal disease control, so ten gallons of water per acre is generally applied with the fungicide.”

New Alberta online Fusarium head blight risk tool

-

Alberta’s wheat farmers can now add a Fusarium head blight (FHB) risk tool to their agronomy toolbox, improving their ability to make well-informed decisions related to FHB disease management. The risk tool was developed in a partnership between the Alberta Wheat Commission and Alberta Climate Information Service (ACIS) with expert support from researchers based at Agriculture and Forestry (AF) and Agriculture and Agri-Food Canada (AAFC).

This local disease infection risk tool is optimized for use on mobile devices, enabling farmers to remotely view hourly updates on FHB disease severity for their location. Risk is based on a seven-day history of rain, temperature and humidity.

“The key to a successful growing season is to have the best information possible when it comes to risks that our crops face,” said Kevin Auch, AWC chair. “With FHB becoming more problematic in Alberta, a full scope of risk will be a major help with decision making when it comes to fungicide applications for disease control.”

The tool also features a live updating provincial map of Alberta with the Disease Severity Index for every weather station as well an info tab containing best management practices.

The risk tool was initiated by AWC and ACIS unit lead Ralph Wright and engineered by technical analyst Dr. Pawel Pytlack, also with ACIS. The interface pulls data from weather stations Alberta-wide. Expertise from AF plant pathologist Dr. Michael Harding, AF plant disease researcher Neil Whatley and AAFC plant disease researcher Dr. Kelly Turkington helped to connect the weather data to FHB risk.

“Each day ACIS collects nearly 130,000 hourly weather observations from more than 370 stations province wide,” said Ralph Wright, ACIS unit lead. “Weather conditions have enormous impacts on farming operations. Coupling the weather observations to a risk tool is a fantastic example of how weather data can be used to help producers make timely, informed decisions.”

Alberta farmers can view the maps online and are encouraged to provide feedback on the website to AWC’s grower relations and extension coordinator, Brian Kennedy. More information on the FHB risk maps is available at albertawheat.com.

The Push for Higher Protein, Starch in Peas

-

Chen is inspecting a pea field at Central Agricultural Research Center, Montana State University. (Photo courtesy of Central Agricultural Research Center)

Farmers in Montana, and other parts of the Northern Great Plains, are shifting from cereal mono-cropping to a cereal-dry pea cropping system; however, this transition is not without its share of unknowns.

Yield and performance of pea crops depend on their genetics and the environment. Environmental factors such as temperature and rainfall can vary greatly. Farmers in different parts of the Plains need to know which pea varieties will do well in the area they are farming.

Chengci Chen of Montana State University is working to generate that information. He has been studying how pea genetics interact with the environment to affect crop yields, and pea protein and starch content.

“Ultimately, I hope to be able to recommend which pea varieties to cultivate to growers in various environments,” says Chen.

To do that, Chen and his colleagues tested how nine different varieties of pea performed when grown in five locations across Montana. These locations were spread across the state and had different soils and climatic conditions.

Chen examined yield and protein and starch content of the different pea varieties. “These are characteristics that are important to growers and end users,” he says. Pea varieties that have higher yield can bring more profits to producers. Varieties that have higher protein or starch contents interest different end users.

For example, “dry yellow peas are fractionated into protein, starch and fiber. These components are widely used in food ingredients, especially by health-food businesses,” Chen explains. “The market for pea protein is growing rapidly because it is non-dairy and allergen-friendly.”

When the researchers evaluated the nine pea varieties grown in different environments, they found that “pea yield is affected by both genetics and environment, but environment has the larger effect,” Chen says.

Pea protein content is largely affected by environment as well. However, one kind of starch — resistant starch — content is mainly controlled by genetics.

The Northern Great Plains spans five U.S. states and two Canadian provinces.

Farmers in Montana, and other parts of the Northern Great Plains, are shifting from cereal mono-cropping to a cereal-dry pea cropping system; however, this transition is not without its share of unknowns.

Yield and performance of pea crops depend on their genetics and the environment. Environmental factors such as temperature and rainfall can vary greatly. Farmers in different parts of the Plains need to know which pea varieties will do well in the area they are farming.

Chengci Chen of Montana State University is working to generate that information. He has been studying how pea genetics interact with the environment to affect crop yields, and pea protein and starch content.

“Ultimately, I hope to be able to recommend which pea varieties to cultivate to growers in various environments,” says Chen.

To do that, Chen and his colleagues tested how nine different varieties of pea performed when grown in five locations across Montana. These locations were spread across the state and had different soils and climatic conditions.

Chen examined yield and protein and starch content of the different pea varieties. “These are characteristics that are important to growers and end users,” he says. Pea varieties that have higher yield can bring more profits to producers. Varieties that have higher protein or starch contents interest different end users.

For example, “dry yellow peas are fractionated into protein, starch and fiber. These components are widely used in food ingredients, especially by health-food businesses,” Chen explains. “The market for pea protein is growing rapidly because it is non-dairy and allergen-friendly.”

When the researchers evaluated the nine pea varieties grown in different environments, they found that “pea yield is affected by both genetics and environment, but environment has the larger effect,” Chen says.

Pea protein content is largely affected by environment as well. However, one kind of starch — resistant starch — content is mainly controlled by genetics.

Source: Seed World